

Content Mastery (First Exams in May 2025) – Road to IB Exams

<u>Color code:</u> Standard Level **Higher level (AHL)**

<u>Structure 1</u> Models of Particulate Matter	1.1 – Particulate Nature of Matter	Solvation, Filtration, Re-crystallisation, Evaporation, Distillation & Paper Chromatography	Homogenous & Heterogenous Mixture	Melting, Freezing, Vaporisation, Condensation, Sublimation and Deposition	Kelvin (K) scale of temperature		
	1.2 – The nuclear atom	Nuclear Symbol	Isotopes, % Abundance of isotopes	Interpret Mass Spectra of Isotopes (AHL)	-		
	1.3 – Electronic Configurations	Emission Spectrum & Energy Levels	Continuous & Line Spectrum	Shells, Sub-shells, Orbitals (s, p, d, f) notation. Aufbau, Hund's Rule, Pauli exclusion principle & orbital box diagrams.	Trends & Discontinuities in first IE across period & down the group. (AHL) Calculate the value of first IE from wavelength or frequency of convergence limit. (AHL)		
	1.4 – Mole concept	Mol, Relative atomic mass, Relative formula mass, Molar Mass	Empirical Formula Based on Mass and Combustion.	Concentrations Molar volume	-		
	1.5 – Ideal Gases	Assumptions & limitations in ideal gas model.	Ideal Gas Equations	Ideal Gas Graphs	-		

Structure 2 Models of bonding and structure	2.1 – Ionic Model	<u>Formation of Ions</u> – Predict from electronic configuration	Deduce formula of ionic compounds including polyatomic ions	Physical properties of ionic compounds: Volatility, electrical conductivity and solubility	Lattice Enthalpy and factors affecting it.	
	2.2 – Covalent Model	Lewis structures, Dative bond & VSEPR	Bond Polarity & Molecular Polarity	Intermolecular Forces: LDF, Dipole-induced, Dipole- dipole & Hydrogen bonding.	Giant covalent compounds Physical properties of covalent compounds: Volatility, electrical conductivity and solubility	
	2.2 – Covalent Model (continued)		Transition Metal Complexes (AHL)	Resonance & Benzene (AHL) Expanded Octet (AHL) Formal Charges (AHL)	Sigma, Pi-bonds (AHL) Hybridisation (AHL)	
	2.3 – Metallic Model	Physical properties of metals: Thermal & electrical conductivity and Malleability	Trends in melting points in s & p block metals.	Explain high melting point and conductivity of transition metals (AHL)	-	
	2.4 – Models to Materials	Triangular Bonding Diagram	Properties of alloys	Properties of Polymers, Addition Polymerisation & Condensation Polymerisation		

Structure 3 Classification of Matter	3.1 – Periodic Table	Identify metals, metalloids & non- metals	Deduce electronic configurations for elements up to Z=36	Explain the periodicity of atomic radius, ionic radius, ionisation energy, electron affinity, electronegativity and period 3 oxides.	Describe and explain the reactions of group 1 metals with water and if group 17 elements with halides ions.		
	3.1 – Periodic Table (continued)	Deduce the oxidation states of an atom in an ion or a compound.	Explain how these discontinuities provide evidence for the existence of energy sublevels (AHL)	Transition metals – variable oxidation state (AHL) Transition metals – High MP & Magnetic Properties (AHL Transition metals – Coloured Complexes (AHL)			
	3.2 Functional Groups in Organic Chemistry		olecular, Skeletal & Struc Homologous series & 1 Name of Functional AC rules for naming orga	properties <u>Structural Isomers :</u> l Groups Chain/Branch, Positional & Europtional Croup			
	3.2 Functional Groups in Organic Chemistry (continued)	Stereoisomers (AHL) -Optical Isomers -Geometric	Mass Spectrometry of Organic Compounds (AHL)	Infrared Spectrometry of Organic Compounds (AHL)	Proton Nuclear Magnetic Resonance (NMR) of Organic Compounds (AHL)		

Reactivity 1 What drives chemical reactions ?	1.1 – Measuring Enthalpy Changes	Energy Level, Ener stability of prod	dothermic Reactions : rgy profile diagrams & ucts, intermediates, tes and reactants	Calorimetric Calculations : $q = mc \Delta T$ $\Delta H = \pm q / n$		
	1.2 – Energy Cycles in reactions	Calculating enthalpy change from average bond enthalpy data	Hess's Law (multi-step reactions only)	Hess's Law using Enthalpy changes of Combustion & Formation (AHL)	Born-Haber cycle: Atomisation, I.E, E.A, L.E & Formation of ionic compounds (AHL)	
	1.3 – Energy from Fuels	Complete & Incomplete combustion equations	<u>Fossil Fuels :</u> Coal Crude Oil Natural Gas	<u>Bio – Fuels:</u> Renewable & Non-renewable energy. Advantages & Disadvantages	<u>Fuel Cell:</u> Hydrogen & methanol fuel cells.	
	1.4 – Entropy & Spontaneity (AHL)	Entropy (S [⊖]) & Δ Entropy (ΔS [⊖]) (AHL)		spontaneous <u>(AHL)</u>		

	2.1 – How much?	Percentage Yield, Limiting Agents & Atom Economy					
Reactivity 2 How much, How fast and how far?	2.2 – How fast? 2.3 – How far?	Energy Profile Diagrams Calculate rate of reactions. Factors affecting rate of reactions Physical Equilibria <u>Chemical Equilibria</u> Homogenous Heterogenous	Maxwell-Boltzmann distribution curves for catalyst and temperature Equilibrium constant Kc > 1, Kc >> 1 K=1 Kc < 1, Kc << 1	1	Rate constant (k) (AHL) Arrhenius equation to calculate Ea (AHL) Arrhenius factor A (AHL) Principle oncentration effects. ph illustrating LCP		
	2.3 – How far? (continued)	Reaction Quotient (Q) calculations (AHL)	Initial, Change & calculations for f equilibri	nomogenous	<u>Gibbs Free Energy at equilibrium (AF</u> 1) $\Delta G = \Delta G \ominus + RT \ln Q$ 2) $\Delta G \ominus - RT \ln K$		

Content Mastery (First Exams in May 2025) – Road to IB Exams

<u>Color code:</u> Standard Level **Higher level (AHL)**

Reactivity 3 What are the mechanisms of a chemical change?	3.1 – Proton Transfer	Brønsted-lowry theory pH Scale		Ionic product constant (Kw) of water.	pOH scale, pH + pOH =14 (AHL)	pH of salts (salt hydrolysis) (AHL)	<u>Buffer</u> <u>solutions</u> <u>(AHL)</u>	
	Transier		rong acid weak acid	<u>pH curves</u> Shapes and equivalence point	Ka, Kb, pKa & pKb Ka x Kb = Kw (AHL)	pH curves (all forms) Acid bases indicators (AHL)	How it works? How to prepare?	
	3.2 – Electron Transfer	Redox half equations Ease of oxidation of metals and halogens		Voltaic Cells & Secondary Cells Electrolytic cells (Molten)	Oxidation of Organic compounds Reduction of Organic compounds	Standard Hydrogen E $\Delta G^{\ominus} = - nF$ (AHL)	EΘ _{cell}	
	3.2 – Electron Transfer (continued)	Electrolysis in concentrated and aqueous electrolyte (AHL)			Electroplating & Purification (AHL)			
	3.3 – Electr sharing 3.4 – Electror sharing	ng Homolytic & on-pair		al Substitution Heterolytic fission	Nucleophile & Electro Nucleophilic substitu (Equations only)	Addition read	Addition reactions of alkenes (Equations only)	
	3.4 Electron- pair sharing (AHL)	<u>The</u> Transit	<u>s Acid-Base</u> ory (AHL) tion metal ion ad ligands	S _N 1, S _N 2 mechanisms Leaving Groups	Electrophilic addit mechanisms & Markovnikov rul Unsymmetrical alke	e: Nitration	ic substitution of benzenes n of benzenes	